

Microservices for everyone

Matthias Noback

This book is for sale at http://leanpub.com/microservices-for-everyone

This version was published on 2017-03-10

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2017 Matthias Noback

http://leanpub.com/microservices-for-everyone
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction
Scepticism
Optimism o
Why I have to write thisbook
Design guidelines for thisbook

Overview of thecontents
Tobe continued

What are we talking about?
What is the promise of microservices?
The microservice maturity model
Takingabreath

Modularized Microservices Architecture . .

Independent deployability & Polyglotism
Introducing Docker Engine L oL
Managing multiple containers with Docker Compose

Overriding Compose configuration
Environment variables, ..

Volumes

Build configuration L.

Deploying containers with Docker Machine and Docker Swarm Mode . .

O O 1 O W = =

11
11

12
12
12
12

13

14
15
15
15
15
15
15
15

CONTENTS

Setting the stage for a multi-service polyglot deployment
Docker Machine and Docker Compose
A quick projecttour
Introducing Docker Swarm oL
Independent deployability—atlast
Conclusion

Testability and independent manageability
Improving the safety of change with Continuous Delivery

Continuous delivery with Docker in a microservices architecture

An example of a build pipeline for one microservice
Running the unittests
Building the serviceimage
Running the servicetests
What else do we need in a build pipeline?
End-to-end tests

Conclusion

Cohesive Microservices Architecture

Communication styles
Integration requirements
Integrationstyles.

Filetransfer
Shared database L
Remote procedure invocations, or: service API integration
Messaging integration oL L oo
Characteristics of integration solutions
Blocking versus non-blocking IO
Synchronous versus asynchronous protocols
Synchronous versus asynchronous integration

Implementation examples
Thesetup

Example: Synchronous integration, synchronous protocol, blocking 10

15
15
15
15
15
15

16
16
16
16
16
16
16
16
16
16

19
20
20

CONTENTS

Intermediate example: Synchronous integration, synchronous protocol,
mixed non-blocking IOo o o L.

Example: Synchronous integration, synchronous protocol, non-blocking 10

The need for statelessness L.
Example: A circuit breaker for synchronous communication

Aflakyservice
The circuit breaker inaction 0.

Limitations

Example: Asynchronous integration, asynchronous protocol, non-block-

ing IO

20

20
20
20
20
20

20

Introduction

Scepticism

I can almost hear you think: “Bah, microservices. Nothing good could come from
that!”...

We replaced our monolith with micro services so that every outage could
be more like a murder mystery.

— Honest Status Page @honest_update’

[am absolutely certain that this a solvable problem, but nonetheless, it may scare
you away from considering a microservice architecture as a viable choice for your
company. Especially since you already receive reminders of what a bad choice that
may be on a daily basis (at least if you’re on Twitter):

If one piece of your web of microservices suffers an outage and your
whole system crashes and burns, then you have a distributed monolith.

— Matt Jordan®

lhttps://tvvitter.com/honest_update/status/65 1897353889259520
2https://twitter.com/mattcjcnrdam/status/S 11286734369681408

https://twitter.com/honest_update/status/651897353889259520
https://twitter.com/mattcjordan/status/811286734369681408
https://twitter.com/honest_update/status/651897353889259520
https://twitter.com/mattcjordan/status/811286734369681408

Introduction 2

Which makes me wonder: how does this differ from when we have a single applica-
tion? If something goes wrong in a monolith we usually throw an exception, and let
it crash the application, right? Is it even possible to make our system as resilient as
gets depicted here? When the disaster is too big, there may be nothing we can do to
recover from it. Still, ’'m certain that with a few simple implementation patterns we
can make our microservice system much more resilient than any monolith we have
encountered so far.

If your microservices must be deployed as a complete set in a specific
order, please put them back in a monolith and save yourself some pain.

— Matt Stine®

3https://twitter‘com/ mstine/status/755470158861217792

https://twitter.com/mstine/status/755470158861217792
https://twitter.com/mstine/status/755470158861217792

Introduction 3

This sounds like good advice though. One of the main design goals of microservices
is that services can be created and removed on-the-fly and other services shouldn’t
produce any failures because of that. If this is not the case, indeed we should get back
to our monolith. But not too fast! There are some good solutions available.

Microservices without asynchronous communication are as good as
writing monolith app.

— Ajey Gore*

Asynchronous, event-driven communication is one way to approach the dependency
problem. But it is not the one and only solution. In fact, as we will see later on,
synchronous communication is still a viable solution. It needs a bit of extra work
though. And as soon as you find out how to solve things in an asynchronous
fashion, you’ll be looking for other places where you can switch from synchronous
to asynchronous communication.

I’'m sure there are plenty of teams that have decided to make their next project a
microservices project, which took a lot of research and a lot of work and the project
may have ended up in quite a bad shape after all. There are many reasons for this.
Probably most of those reasons are the same as for any other kind of software
project: the regular problems related to estimations, deadlines, budgets, etc. Or, as
often happens, developers were eager to try something new, to escape from the
suffocating work on the “legacy system”, seeking their salvation in a microservices
architecture. Or, they were able to run their services on their own machine, but had
trouble getting the whole system up and running, monitored and all, in an actual
production environment.

Optimism

While still surrounded by microservice negativism the tech community has in fact
been floating on a wave of microservices hype. Trusting on my built-in “tech radar”
and “mood calculator” though, it feels like we’re almost past this hype. If I look
around me, we're more in the assess phase: “This could be something for us, let’s

4https://tv\fitter.com/ajeygore/status/723905406863433728

https://twitter.com/ajeygore/status/723905406863433728
https://twitter.com/ajeygore/status/723905406863433728

Introduction 4

find out” And I agree, it’s time to prove that this can work. It’s my current belief that
we need the following ingredients for that:

« We need to put a lot of focus on our domain and create (but also continuously
refine) a suitable model for it. In order to do so, we need to apply Domain-
Driven Design (DDD), take a sincere interest in the business domain and find
out how we can contribute by creating software.

« We need to consciously and continuously look for ways to refine our service
boundaries and how services are connected.

+ We need to develop some organizational awareness, and look for bottlenecks
in the way teams are structured and how they communicate.

« We need to adopt a “devops” mindset, since we need to be able to set up and
manage the infrastructure that runs our services.

That’s a nice little list, but it might represent a lot of work for you. Not necessarily
programming work, but learning work. And this is generally the hardest kind of
work. As Alberto Brandolini® puts it: “Learning is the bottleneck”. This quote itself
is derived from Dan North’s article on Deliberate Discovery®), who says that it’s not
learning but “ignorance” which is the “single greatest impediment to throughput”.
Looking at the list of ingredients above, you may well find that you’re not quite
ready to start you microservice journey, or maybe you are, but your team is not.
You may not have much experience with DDD, you may not be concerned with
organizational structures, and you may not like fixing things on a server. And above
all, you may feel that you don’t have the time to learn it all.

My first comforting message to you is: you are not alone. Looking at online lists of re-
sources on various topics that might interest programmers, it becomes apparent that
the target audience is expected to only take an interest in programming languages,
programming techniques, OOP principles, patterns, frameworks and libraries. Take
a look at lists of resources like Java Annotated Monthly’ from IntelliJ, or in my own
community, PlanetPHP® or PHPDeveloper.org’, and you’ll notice that almost nobody
seems to concern themselves with Domain-Driven Design or devops.

5http:/ /www.slideshare.net/ziobrando/optimized-for-what/30?src=clipshare
6https:/ /dannorth.net/2010/08/30/introducing-deliberate-discovery/

7https:/ /blog.jetbrains.com/idea/tag/java-annotated/

8http:/ /www.planet-php.net/

®http://phpdeveloper.org/

http://www.slideshare.net/ziobrando/optimized-for-what/30?src=clipshare
https://dannorth.net/2010/08/30/introducing-deliberate-discovery/
https://blog.jetbrains.com/idea/tag/java-annotated/
http://www.planet-php.net/
http://phpdeveloper.org/
http://www.slideshare.net/ziobrando/optimized-for-what/30?src=clipshare
https://dannorth.net/2010/08/30/introducing-deliberate-discovery/
https://blog.jetbrains.com/idea/tag/java-annotated/
http://www.planet-php.net/
http://phpdeveloper.org/

Introduction 5

My second comforting message to you is: it’s not too late to catch up. In fact, at
this very moment it’s easier than ever before. All over Europe local communities
are gathering in meetup groups about Domain-Driven Design and devops. It’s not
just local meetups, there are international conferences on these topics too, like DDD
Europe, DDDx, DockerCon, etc. And besides a large number of learning initiatives,
we now have a lot of powerful yet easy-to-use tools available. We can create stand-
alone deployable artifacts for our software using Docker, and deploy them using
Docker Swarm, or Kubernetes, or integrated, even more user-friendly solutions on
top of these container orchestration tools.

I’'m confident that learning about microservices will pay off. It should shake out many
issues that had so far been hidden from sight, swept under the carpet, or worked
around for ages. Think of issues like:

1. Spaghetti code; everything knows about everything and can use any function
or piece of data available in the entire system.

2. Single-person, delayed deployments; only one person in the organization
knows how to deploy the application, and does so only every week, month
or quarter.

3. Teams breaking the applications of other teams; they have trouble integrating
their applications, which almost never succeeds in one go. Hence, they fear
releasing their software (or only dare to do it in a coordinated fashion, late at
night).

4. Teams not being able to decide upon the best course of action, hence doing a
lot of rework, or delivering sub-optimal solutions.

5. Vendor lock-in; hosting providers that offer only a certain set of services (e.g.
Nginx, MySQL, Memcache; while you would like to use Apache, Cassandra
and Redis).

6. Scaling issues; in order to accommodate higher demand, you’ve only focused
on performance optimizations in the request-response flow, applying patches
everywhere, caching results, etc. There is a limit to what your current verti-
cally scaled setup can handle, but you don’t know how to prepare for the next
step.

Adopting microservices is going to make all these issues clear, out in the open and
ready to get fixed:

Introduction 6

1. You can and need to start isolating data, and related behaviors.

2. You and everyone on your team will be able to release their software and, if
you want, even deploy it to production servers.

3. You will be forced to explicitly define contracts for each service: how can other
services communicate with it, which events does this service expose, etc. You
have to think harder about explicit interfaces and focus on use cases first.

4. Because the size of each service is relatively small, most of your design
decisions only reach as far as the boundaries of the service itself. This means
you can try radically new approaches and fall back on more traditional
solutions if it doesn’t work out as expected.

5. Working with microservices allows you to try different types of databases
and different technologies in general. This offers even more opportunities to
experiment.

6. With microservices, scaling gets another dimension. Instead of looking for
bigger, stronger machines, you can now invest in more, yet simpler machines.
Resource usage will be distributed more evenly, in particular when you start
using asynchronous communication.

Whether or not you are actually going to create microservices, the things you're
going to learn about modularization, team work, domain modelling, and operations
is useful either way.

Why | have to write this book

I’ve been developing web application since 2003. At the risk of sounding like an old
man: ['ve seen many things come and go. A couple of years ago I realized that my
work as a software developer has become much more interesting than it was before.
My activities started to stretch further than my keyboard could reach. With the
advent of Domain-Driven Design and the Docker ecosystem, I feel more empowered
to deliver useful software than I ever did before.

[feel that I'm the right person to write this book, as I enjoy writing, but I also
enjoy reading. I've read a lot about microservices and adjacent topics, like DDD,
continuous delivery, messaging integration, Docker, etc. It’s crucial to note though

Introduction 7

that so far I have not had the opportunity to work on a large microservice system.
So this book won’t contain wild stories from the trenches. This is a book about
the technologies involved in a microservices architecture, focusing mostly on the
software development involved, and how you can make the best design decisions.

This book is not so much about showing you in overly enthusiastic words that you’re
crazy if you don’t do microservices. It’s about my hypothesis that over the past
few years the tech community has been working their way towards the peak of
Microservice Impediments. | want to prove that we are at a point where the overhead
of implementing a microservice architecture starts being smaller and smaller, and is
currently at least small enough to justify it, even for smaller teams. You don’t have
to be Netflix or Amazon to benefit from building your software as microservices.

24

We’ve reached the peak of Microservice Impediments

Design guidelines for this book

Since writing a book is a daunting task which can quickly get out of hand, I find
that I'm better off with an explicit list of guidelines. This should help me decide on
a case-by-case basis if I should write more, or if I should stop writing.

Since I want to combine insights from Domain-Driven Design (DDD) with practices
of Continuous Delivery we’re going to use Docker to create containers running single

Introduction 8

services. Each service encapsulates part of the overall domain model, so they are
bounded contexts. This isn’t a book about Docker though, nor about DDD, so I won’t
explain everything to you. Instead, I'll give you:

Short summaries, a little bit of background, quotes, and pointers.

Microservices come with an entire ecosystem. It would be impossible to provide you
with the best solutions, the ultimate or ideal ones. In fact, I couldn’t do that, because
each situation requires a different solution, to be determined based on the particular
context. In this book I want to provide simple solutions (to prove that you don’t really
need to put a lot of work in it to arrive at a minimum viable solution). So:

A few lines of code should be enough to show that it can work.

Like every tech book, this book will show you the happy path. Since many peo-
ple have been talking quite negatively about microservices, warning about their
dangers—and rightly so—it would be unfair to ignore the problems. So:

For each overly simplistic solution, add a list of things to consider once
you really start implementing microservices.

I’d like to make the code examples in this book as general as possible, in order to be
read and understood by people who are familiar with any programming language.
Like in my previous books:

Code samples will be written in PHP.

If you know Java: PHP is much like Java anyway, just ignore the dollar signs. The
main reason to choose PHP is that it’s my “native” language. However, an important
second reason is that the PHP community needs to be shown that they work with a
language that may not be so well-designed; you can still do great things with it.

Introduction 9
Rigor?

If you have read my previous book, Principles of Package Design'’, you know that
I'm generally a man of rigor. I want things to be exactly right. Given a technical
subject, I want to know what I'm talking about, so I'll investigate it until I'm sure
that: 1. I don’t say anything about it that’s incorrect, and 2. I won’t give anyone
bad advice about it. So far, this approach has worked out well. 'm not a troubled
perfectionist. I just know that the only way to go fast is to go well. However, I must
admit that sometimes I get lost in a subject. In particular in the areas in which I'm
less well versed, like operations. 'm learning my way in infrastructure-land, but the
situation for me is sub-optimal at the moment and everything is still a time-sink, like
programming was when I first started with it. In fact, I know that I do not know. The
danger is, of course, that what I do or preach in this area is not the best thing one
could do or preach. I've decided to let go of the feeling of uneasiness coming with
that and to rely more on the feedback that will automatically fly back to me, the
moment I publish something. I'm slowly, but surely, accepting that I don’t have to
know everything about everything and that help will always be given to those who
ask for it.

Ethics

If I ever want to finish this book, I can’t make it complete, rigorous, nor entirely
correct. I'll have to cut some corners. In order to keep things moral though, for
the both of us, I have to define my own ethics first. I like how Nassim Nicholas
Taleb explicitly defines his own ethos in the introduction of his pretty heavy
book Antifragile—things that gain from disorder. I never finished that one, but
nevertheless got some interesting ideas from it (this is the least a book should offer
to me, if it stops doing that, I'll put it away).

Nassim writes that “If the subject is not interesting enough for me to look it up
independently, for my own curiosity or purposes, and I have not done so before,
then I should not be writing about it at all, period.” Of course, external sources are
not banned, nor deemed worthless. But he doesn’t want his writing to be directed

10https://leanpub.com/principles—of—package— design/

https://leanpub.com/principles-of-package-design/
https://leanpub.com/principles-of-package-design/

Introduction 10

by these. “Only distilled ideas, ones that sit in us for a long time, are acceptable—
and those that come from reality” This is something I’d like to do myself too. I've
read many books on software development and have developed lots of software, and
would like to speak both from experience and existing knowledge about ideas that
have been boiling for quite some time now.

In order to keep myself high-spirited, I'll use my internal compass, which revolves
around procrastination. I know it’s a pretty negative concept and I'm sure you all
have some experience with it. There are times when I think I have to do activity A,
while I’'m craving to do activity B and often just start doing B anyway. As long as the
lives around me don’t completely derail, there are many good aspects about doing
B, while not doing A. Again, Nassim has some interesting words about it:

A very intelligent group of revolutionary fellows in the United Kingdom
created a political movement [...] based on opportunistically delaying
the revolution. [...] In retrospect, it turned out to be a very effective
strategy, not so much as a way to achieve their objectives, but rather
to accommodate the fact that these objectives are moving targets.
Procrastination turned out to be a way to let events take their course and
give the activists the chance to change their minds before committing
to irreversible policies.

I often find that not doing A will let me discover things about A that were wrong
about it. Sometimes A isn’t the best thing you can do to achieve a certain goal. There
may be more effective ways. Maybe A is not helpful at all, or even harmful. Besides,
B is nicer to do, more energizing at this moment. And it might put you on a trail to
some place else, or provide you with a more interesting and compelling journey.

This is why T'll make writing as fun and interesting as possible. I'll likely come
up with exotic topics, interesting implementation discussions, fun little open-source
libraries, and if I notice my attention drifting away, or if I find myself bored by the
writing itself, I'll focus on some other topic, trusting that you would otherwise get
bored too.

Introduction 11

Overview of the contents

The order in which I'm going to discuss all relevant topics is not certain yet, but this
is a list of some of the keywords for this book:

Exploring the domain, event storming, bounded contexts, services, Docker, contin-
uous delivery, CRUD, CQRS, event sourcing, shared database, synchronous HTTP
calls, asynchronous messaging, ports & adapters, user interface, storage, serialization.

To be continued

For now, this is all that’s available of Microservices for everyone. If you like it, please
let me know.

« Tweet me at @matthiasnoback™
« Send an email’?
« Discuss this book online®®

11https:/ /twitter.com/matthiasnoback
12https:/ /leanpub.com/microservices-for-everyone/feedback
Bhitps://leanpub.com/microservices-for-everyone/feedback

https://twitter.com/matthiasnoback
https://leanpub.com/microservices-for-everyone/feedback
https://leanpub.com/microservices-for-everyone/feedback
https://twitter.com/matthiasnoback
https://leanpub.com/microservices-for-everyone/feedback
https://leanpub.com/microservices-for-everyone/feedback

What are we talking about?
What is the promise of microservices?
The microservice maturity model

Taking a breath

Modularized Microservices
Architecture

Independent deployability & Polyglotism 15

Independent deployability &
Polyglotism

Introducing Docker Engine

Managing multiple containers with Docker
Compose

Overriding Compose configuration

Environment variables
Volumes

Build configuration
Deploying containers with Docker Machine
and Docker Swarm Mode

Setting the stage for a multi-service polyglot
deployment

Docker Machine and Docker Compose
A quick project tour
Introducing Docker Swarm

Independent deployability—at last

Conclusion

Testability and independent
manageability

Improving the safety of change with
Continuous Delivery

Continuous delivery with Docker in a
microservices architecture

An example of a build pipeline for one
microservice

Running the unit tests

Building the service image

Running the service tests

What else do we need in a build pipeline?

End-to-end tests

Conclusion

Cohesive Microservices
Architecture

Communication styles

Integration requirements

Integration styles

File transfer
Shared database

Remote procedure invocations, or: service API
integration

Messaging integration
Characteristics of integration solutions

Blocking versus non-blocking 10
Synchronous versus asynchronous protocols

Synchronous versus asynchronous integration

Implementation examples

Implementation examples
The setup

Example: Synchronous integration,
synchronous protocol, blocking 10

Intermediate example: Synchronous
integration, synchronous protocol, mixed
non-blocking 10

Example: Synchronous integration,
synchronous protocol, non-blocking 10

The need for statelessness

Example: A circuit breaker for synchronous
communication

A flaky service
The circuit breaker in action
Limitations

Example: Asynchronous integration,
asynchronous protocol, non-blocking 10

20

	Table of Contents
	Introduction
	Scepticism
	Optimism
	Why I have to write this book
	Design guidelines for this book
	Rigor?
	Ethics
	Overview of the contents
	To be continued

	What are we talking about?
	What is the promise of microservices?
	The microservice maturity model
	Taking a breath

	Modularized Microservices Architecture
	Independent deployability & Polyglotism
	Introducing Docker Engine
	Managing multiple containers with Docker Compose
	Overriding Compose configuration
	Environment variables
	Volumes
	Build configuration

	Deploying containers with Docker Machine and Docker Swarm Mode
	Setting the stage for a multi-service polyglot deployment
	Docker Machine and Docker Compose
	A quick project tour
	Introducing Docker Swarm
	Independent deployability—at last

	Conclusion

	Testability and independent manageability
	Improving the safety of change with Continuous Delivery
	Continuous delivery with Docker in a microservices architecture
	An example of a build pipeline for one microservice
	Running the unit tests
	Building the service image
	Running the service tests
	What else do we need in a build pipeline?
	End-to-end tests

	Conclusion

	Cohesive Microservices Architecture
	Communication styles
	Integration requirements
	Integration styles
	File transfer
	Shared database
	Remote procedure invocations, or: service API integration

	Messaging integration
	Characteristics of integration solutions
	Blocking versus non-blocking IO
	Synchronous versus asynchronous protocols
	Synchronous versus asynchronous integration

	Implementation examples
	The setup
	Example: Synchronous integration, synchronous protocol, blocking IO
	Intermediate example: Synchronous integration, synchronous protocol, mixed non-blocking IO
	Example: Synchronous integration, synchronous protocol, non-blocking IO
	The need for statelessness
	Example: A circuit breaker for synchronous communication
	A flaky service

	The circuit breaker in action
	Limitations

	Example: Asynchronous integration, asynchronous protocol, non-blocking IO

